Tractable Bayesian Inference of Time-Series Dependence Structure
نویسندگان
چکیده
We consider the problem of Bayesian inference of graphical structure describing the interactions among multiple vector time-series. A directed temporal interaction model is presented which assumes a fixed dependence structure among time-series. Using a conjugate prior over this model’s structure and parameters, we focus our attention on characterizing the exact posterior uncertainty in the structure given data. The model is extended via the introduction of a dynamically evolving latent variable which indexes dependence structures over time. Performing inference using this model yields promising results when analyzing the interaction of multiple tracked moving objects.
منابع مشابه
Modeling and inference of changing dependence among multiple time-series
In this dissertation we investigate the problem of reasoning over evolving structures which describe the dependence among multiple, possibly vector-valued, time-series. Such problems arise naturally in variety of settings. Consider the problem of object interaction analysis. Given tracks of multiple moving objects one may wish to describe if and how these objects are interacting over time. Alte...
متن کاملBayesian approach to inference of population structure
Methods of inferring the population structure, its applications in identifying disease models as well as foresighting the physical and mental situation of human beings have been finding ever-increasing importance. In this article, first, motivation and significance of studying the problem of population structure is explained. In the next section, the applications of inference of p...
متن کاملMarkov Logarithmic Series Distribution and Estimation of its Parameters by Method of E-Bayesian
In the analysis of Bernoulli's variables, an investigation of the their dependence is of the prime importance. In this paper, the distribution of the Markov logarithmic series is introduced by the execution of the first-order dependence among Bernoulli variables. In order to estimate the parameters of this distribution, maximum likelihood, moment, Bayesian and also a new method which called the...
متن کاملBayesian Time Series Modelling and Prediction with Long-Range Dependence
We present a class of models for trend plus stationary component time series, in which the spectral densities of stationary components are represented via non-parametric smoothness priors combined with long-range dependence components. We discuss model tting and computational issues underlying Bayesian inference under such models, and provide illustration in studies of a climatological time ser...
متن کاملAn Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کامل